初一数学下册知识点归纳 篇1初一数学下册期末考试知识点总结一(苏教版)第七章 平面图形的认识(二) 1第八章 幂的运算 2第九章 整式的乘法与因式分解 3第十章 二元一次方程组 4第十一章 一元一次不等式 4第十二章 证明 9第七章 平面图形的认识(二)一、知识点...

活动范文 > 综合分类 > 导航 > 初一数学下册知识点归纳(汇总八篇)

初一数学下册知识点归纳(汇总八篇)

2025-05-09

初一数学下册知识点归纳 篇1

初一数学下册期末考试知识点总结一(苏教版)

第七章 平面图形的认识(二) 1

第八章 幂的运算 2

第九章 整式的乘法与因式分解 3

第十章 二元一次方程组 4

第十一章 一元一次不等式 4

第十二章 证明 9

第七章 平面图形的认识(二)

一、知识点:

1、“三线八角”

① 如何由线找角:一看线,二看型。

同位角是“F”型;

内错角是“Z”型;

同旁内角是“U”型。

② 如何由角找线:组成角的三条线中的公共直线就是截线。

2、平行公理:

如果两条直线都和第三条直线平行,那么这两条直线也平行。

简述:平行于同一条直线的两条直线平行。

补充定理:

如果两条直线都和第三条直线垂直,那么这两条直线也平行。

简述:垂直于同一条直线的两条直线平行。

3、平行线的判定和性质:

判定定理 性质定理

条件 结论 条件 结论

同位角相等 两直线平行 两直线平行 同位角相等

内错角相等 两直线平行 两直线平行 内错角相等

同旁内角互补 两直线平行 两直线平行 同旁内角互补

4、图形平移的性质:

图形经过平移,连接各组对应点所得的线段互相平行(或在同一直线上)并且相等。

5、三角形三边之间的关系:

三角形的任意两边之和大于第三边;

三角形的任意两边之差小于第三边。

若三角形的三边分别为a、b、c,

6、三角形中的主要线段:

三角形的高、角平分线、中线。

注意:①三角形的高、角平分线、中线都是线段。

②高、角平分线、中线的应用。

7、三角形的内角和:

三角形的3个内角的和等于180°;

直角三角形的两个锐角互余;

三角形的一个外角等于与它不相邻的两个内角的和;

三角形的一个外角大于与它不相邻的任意一个内角。

8、多边形的内角和:

n边形的内角和等于(n-2)180°;

任意多边形的外角和等于360°。

第八章 幂的运算

幂(p5

初一数学下册知识点归纳 篇2

初一下册知识点总结

1.同底数幂的乘法:am?an=am+n ,底数不变,指数相加。

2.同底数幂的除法:am÷an=am-n ,底数不变,指数相减。

3.幂的乘方与积的乘方:(am)n=amn ,底数不变,指数相乘; (ab)n=anbn ,积的乘方等于各因式乘方的积。

4.零指数与负指数公式:

(1)a0=1 (a≠0); a-n= ,(a≠0)。 注意:00,0-2无意义。

(2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01×10-5。

5.(1)平方差公式:(a+b)(a-b)= a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;

(2)完全平方公式:

① (a+b)2=a2+2ab+b2, 两个数和的平方,等于它们的平方和,加上它们的积的2倍;

② (a-b)2=a2-2ab+b2 , 两个数差的平方,等于它们的平方和,减去它们的积的2倍;

※ ③ (a+b-c)2=a2+b2+c2+2ab-2ac-2bc

6.配方:

(1)若二次三项式x2+px+q是完全平方式,则有关系式: ;

※ (2)二次三项式ax2+bx+c经过配方,总可以变为a(x-h)2+k的形式。

注意:当x=h时,可求出ax2+bx+c的最大(或最小)值k。

※(3)注意: 。

7.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;

系数不为零时,单项式中所有字母指数的和,叫单项式的次数。

8.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;

多项式里,次数最高项的次数叫多项式的次数;

注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式。

9.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。

10.合并同类项法则:系数相加,字母与字母的指数不变。

11.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。

注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。

平面几何部分

1、补角重要性质:同角或等角的补角相等.

余角重要性质:同角或等角的余角相等.

2、①直线公理:过两点有且只有一条直线.

线段公理:两点之间线段最短.

②有关垂线的定理:(1)过一点有且只有一条直线与已知直线垂直;

(2)直线外一点与直线上各点连结的所有线段中,垂线段最短.

比例尺:比例尺1:m中,1表示图上距离,m表示实际距离,若图上1厘米,表示实际距离m厘米.

3、三角形的内角和等于180

三角形的一个外角等于与它不相邻的两个内角的和

三角形的一个外角大于与它不相邻的任何一个内角

4、n边形的对角线公式:

各个角都相等,各条边都相等的多边形叫做正多边形

5、n边形的内角和公式:180(n-2); 多边形的外角和等于360

6、判断三条线段能否组成三角形:

①a+b>c(a b为最短的两条线段)②a-b

7、第三边取值范围:

a-b< c

8、对应周长取值范围:

若两边分别为a,b则周长的取值范围是 2a

如两边分别为5和7则周长的取值范围是 14

9、相关命题:

(1) 三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。

(2) 锐角三角形中最大的锐角的取值范围是60≤X<90 。最大锐角不小于60度。

(3)任意一个三角形两角平分线的夹角=90+第三角的一半。

(4) 钝角三角形有两条高在外部。

(5) 全等图形的大小(面积、周长)、形状都相同。

(6) 面积相等的两个三角形不一定是全等图形。

(7) 三角形具有稳定性。

(8) 角平分线到角的两边距离相等。

(9)有一个角是60的等腰三角形是等边三角形。

初一数学下册知识点归纳 篇3

本章重点:一元一次不等式的解法,

本章难点:了解不等式的解集和不等式组的解集的确定,正确运用不等式基本性质。

本章关键:彻底弄清不等式和等式的基本性质的区别.

(1)不等式概念:用不等号(“≠”、“”)表示的不等关系的式子叫做不等式

(2)不等式的基本性质,它是解不等式的理论依据.

(3)分清不等式的解集和解不等式是两个完全不同的概念.

(4)不等式的解一般有无限多个数值,把它们表示在数轴上,

(5)一元一次不等式的概念、解法是本章的重点和核心

(6)一元一次不等式的解集,在数轴上表示一元一次不等式的解集

(7)由两个一元一次不等式组成的一元一次不等式组.一元一次不等式组可以由几个(同未知数的)一元一次不等式组成(8)利用数轴确定一元一次不等式组的解集

第六章:

1.二元一次方程,二元一次方程组以及它的解,明确二元一次方程组的解是一对未知数的值,会检验一对数值是不是某一个二元一次方程组的解.

2.一次方程组的两种基本解法,能灵活运用代入法,加减法解二元一次方程组及简单的'三元一次方程组.

3.根据给出的应用问题,列出相应的二元一次方程组或三元一次方程组,从而求出问题的解,并能根据问题的实际意义,检查结果是否合理.本章的重点是:二元一次方程组的解法代入法,加减法以及列一次方程组解简单的应用问题.

本章的难点是:

1.会用适当的消元方法解二元一次方程组及简单的三元一次方程组;

2.正确地找出应用题中的相等关系,列出一次方程组.

第七章

本章重点是:整式的乘除运算,特别是对幂的运算及乘法公式的应用要达到熟练程度.本章难点是:对乘法公式结构特征和公式中字母意义的理解及乘法公式的灵活应用

1.幂的运算性质,正确地表述这些性质,并能运用它们熟练地进行有关计算.

2.单项式乘以(或除以)单项式,多项式乘以(或除以)单项式,以及多项式乘以多项式的法则,熟练地运用它们进行计算.

3.乘法公式的推导过程,能灵活运用乘法公式进行计算.

4.熟练地运用运算律、运算法则进行运算,

5.体会用字母表示数和用字母表示式子的意义.通过式的变形,深入理解转化的思想方法.

第八章:

1、认识事物的几种方法:观察与实验归纳与类比猜想与证明生活中的说理数学中的说理

2、定义、命题、公理、定理

3、简单几何图形中的推理

4、余角、补交、对顶角

5、平行线的判定判定:一个公理两个定理。

公理:两直线被第三条直线所截,如果同位角相等(数量关系)两直线平行(位置关系)

定理:内错角相等(数量关系)两直线平行(位置关系)定理:同旁内角互补(数量关系)两直线平行(位置关系).

平行线的性质:

两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补

由图形的“位置关系”确定“数量关系”

第九章:

重点:因式分解的方法,

难点:分析多项式的特点,选择适合的分解方法

1.因式分解的概念;

2.因式分解的方法:提取公因式法、公式法、分组分解法(十字相乘法)

3.运用因式分解解决一些实际问题.(包括图形习题)

第十章:

重点是:用统计知识解决现实生活中的实际问题.难点是:用统计知识解决实际问题.

1.统计初步的基本知识,平均数、中位数、众数等的计算。

2.了解数据的收集与整理、绘画三种统计图.

3.应用统计知识解决实际问题能解决与统计相关的综合问题.

初一数学下册知识点归纳 篇4

角的种类:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。

锐角:大于0,小于90的角叫做锐角。

直角:等于90的角叫做直角。

钝角:大于90而小于180的角叫做钝角。

平角:等于180的角叫做平角。

优角:大于180小于360叫优角。

劣角:大于0小于180叫做劣角,锐角、直角、钝角都是劣角。

周角:等于360的角叫做周角。

负角:按照顺时针方向旋转而成的角叫做负角。

正角:逆时针旋转的角为正角。

0角:等于零度的角。

余角和补角:两角之和为90则两角互为余角,两角之和为180则两角互为补角。等角的余角相等,等角的补角相等。

对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。

还有许多种角的关系,如内错角,同位角,同旁内角(三线八角中,主要用来判断平行)!

希望同学们能够认真阅读初一数学角的种类知识点总结,努力提高自己的学习成绩

初一数学下册知识点归纳 篇5

一、目标与要求

1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。

2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。

3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。

4.三角形的内角和定理,能用平行线的性质推出这一定理。

5.能应用三角形内角和定理解决一些简单的实际问题。

二、重点

三角形内角和定理;

对三角形有关概念的了解,能用符号语言表示三条形。

三、难点

三角形内角和定理的推理的过程;

在具体的图形中不重复,且不遗漏地识别所有三角形;

用三角形三边不等关系判定三条线段可否组成三角形。

四、知识框架

xxx

五、知识点、概念总结

1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三角形的分类

3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

7.高线、中线、角平分线的意义和做法

8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

9.三角形内角和定理:三角形三个内角的和等于180°

推论1直角三角形的两个锐角互余;

推论2三角形的一个外角等于和它不相邻的两个内角和;

推论3三角形的一个外角大于任何一个和它不相邻的内角;

三角形的'内角和是外角和的一半。

10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

11.三角形外角的性质

(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;

(2)三角形的一个外角等于与它不相邻的两个内角和;

(3)三角形的一个外角大于与它不相邻的任一内角;

(4)三角形的外角和是360°。

12.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

13.多边形的内角:多边形相邻两边组成的角叫做它的内角。

14.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

15.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

16.多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

17.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。

18.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

19.公式与性质

多边形内角和公式:n边形的内角和等于(n-2)·180°

20.多边形外角和定理:

(1)n边形外角和等于n·180°-(n-2)·180°=360°

(2)多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°

21.多边形对角线的条数:

(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。

(2)n边形共有n(n-3)/2条对角线。

六、经典例题

例1如图,已知△ABC中,AQ=PQ、PR=PS、PR⊥AB于R,PS⊥AC于S,有以下三个结论:①AS=AR;②QP∥AR;③△BRP≌△CSP,其中().

(A)全部正确(B)仅①正确(C)仅①、②正确(D)仅①、③正确

例2如图,结合图形作出了如下判断或推理:

①如图甲,CD⊥AB,D为垂足,那么点C到AB的距离等于C、D两点间的距离;

②如图乙,如果AB∥CD,那么∠B=∠D;

③如图丙,如果∠ACD=∠CAB,那么AD∥BC;

④如图丁,如果∠1=∠2,∠D=120°,那么∠BCD=60°.其中正确的个数是()个.

(A)1(B)2(C)3(D)4

例3在如图所示的方格纸中,画出,△DEF和△DEG(F、G不能重合),使得△ABC≌△DEF≌DEG.你能说明它们为什么全等吗?

例4测量小玻璃管口径的量具CDE上,CD=l0mm,DE=80mm.如果小管口径AB正对着量具上的50mm刻度,那么小管口径AB的长是多少?

例5在直角坐标系中,已知A(-4,0)、B(1,0)、C(0,-2)三点.请按以下要求设计两种方案:作一条与

轴不重合,与△ABC的两边相交的直线,使截得的三角形与△ABC相似,并且面积是△AOC面积的.分别在下面的两个坐标中系画出设计图形,并写出截得的三角形三个顶点的坐标。

下册数学知识点之三角形的相关内容就为大家介绍到这儿了,希望能帮助到大家。

五、同底数幂的除法

a)同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0).

b)在应用时需要注意以下几点:

1)法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a0。

2)任何不等于0的数的0次幂等于1,即a0=1(a≠0),如100=1,(-2.50=1),则00无意义。

c)任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即

(a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的,当a<0时,a-p的值可能是正也可能是负的,如

,d)运算要注意运算顺序。

六、整式的乘法

单项式相乘,它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

单项式乘法法则在运用时要注意以下几点:

a)积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;

b)相同字母相乘,运用同底数幂的乘法法则;

c)只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;

d)单项式乘法法则对于三个以上的单项式相乘同样适用;

e)单项式乘以单项式,结果仍是一个单项式。

单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

单项式与多项式相乘时要注意以下几点:

a)单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;

b)运算时要注意积的符号,多项式的每一项都包括它前面的符号;

c)在混合运算时,要注意运算顺序。

多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项相乘,再把所得的积相加。

多项式与多项式相乘时要注意以下几点:

a)多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;

b)多项式相乘的结果应注意合并同类项;

c)对含有同一个字母的一次项系数是1的两个一次二项式相乘(x+a)(x+b)=x2+(a+b)x+ab,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到。

七、平方差公式

两数和与这两数差的积,等于它们的平方差,即。其结构特征是:

a)公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;

b)公式右边是两项的平方差,即相同项的平方与相反项的平方之差。

八、完全平方公式

两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即;口诀:首平方,尾平方,2倍乘积在中央;

a)公式左边是二项式的完全平方;

b)公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。

c)在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现这样的错误。

九、整式的除法

单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。

初一数学下册知识点归纳 篇6

1.同一平面内,两直线不平行就相交。

2.两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互

为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。

3.垂直定义:两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其

中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。4.垂直三要素:垂直关系,垂直记号,垂足

5.垂直公理:过一点有且只有一条直线与已知直线垂直。6.垂线段最短;

7.点到直线的距离:直线外一点到这条直线的垂线段的长度。8.两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧),内错角Z(在

两条直线内部,位于第三条直线两侧),同旁内角U(在两条直线内部,位于第三条直线同侧)。9.平行公理:过直线外一点有且只有一条直线与已知直线平行。

10.如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如果b//a,c//a,那么b//cP174题

11.平行线的判定。结论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。平行线的性质:

1.两直线平行,同位角相等。2.两直线平行,内错角相等。3.两直线平行,同旁内角互补。

12.★命题:“如果+题设,那么+结论。”

三角形和多边形

1.三角形内角和为180°

2.构成三角形满足的条件:三角形两边之和大于第三边。

判断方法:在△ABC中,a、b为两短边,c为长边,如果a+b>c则能构成三角形,否则(a+bc)不能构成三角形(即三角形最短的两边之和大于最长的边)

3.三角形边的取值范围:三角形的任一边:小于两边之和,大于两边之差(的绝对值)【重点题目】三角形的两边分别为3和7,则三角形的第三边的取值范围为4.等面积法:三角形面积1底高,三角形有三条高,也就对应有三条底边,任取其中一组底和高,21三角形同一个面积公式就有三个表示方法,任取其中两个写成连等(可两边同时2消去)底高

2底高,知道其中三条线段就可求出第四条。例如:如图1,在直角△ABC中,ACB=900,CD

是斜边AB

上的高,则有ACBCCDAB

A

CB1D【重点题目】P708题例直角三角形的三边长分别为3、4、5,则斜边上的.高为5.等高法:高相等,底之间具有一定关系(如成比例或相等)

【例】AD是△ABC的中线,AE是△ABD的中线,SABC4cm2,则SABE=6.三角形的特性:三角形具有【重点题目】P695题7.外角:

【基础知识】什么是外角?外角定理及其推论【重点题目】P75例2P765、6、8题8.n边形的★内角和★外角和√对角线条数为

【基础知识】正多边形:各边相等,各角相等;正n边形每个内角的度数为【重点题目】P83、P84练习1,2,3;P843,4,5,6;P904、5题9.√镶嵌:围绕一个拼接点,各图形组成一个周角(不重叠,无空隙)。

单一正多边形的镶嵌:镶嵌图形的每个内角能被360整除:只有6个等边三角形(60),4个正方形(90),3个正六边形(120)三种

(两种正多边形的)混合镶嵌:混合镶嵌公式nm3600:表示n个内角度数为的正多边形与

0000m个内角度数为的正多边形围绕一个拼接点组成一个周角,即混合镶嵌。

【例】用正三角形与正方形铺满地面,设在一个顶点周围有m个正三角形、n个正方形,则m,n的值分别为多少?

平面直角坐标系

▲基本要求:在平面直角坐标系中1.给出一点,能够写出该点坐标2.给出坐标,能够找到该点

▲建系原则:原点、正方向、横纵轴名称(即x、y)

√语言描述:以…(哪一点)为原点,以…(哪一条直线)为x轴,以…(哪一条直线)为y轴建立直角坐标系

▲基本概念:有顺序的两个数组成的数对称为(有序数对)【三大规律】1.平移规律★

点的平移规律(P51归纳)

例将P(2,3)向左平移3个单位,向上平移5个单位得到点Q,则Q点的坐标为图形的平移规律(P52归纳)

重点题目:P53练习;P543、4题;P557题。2.对称规律▲

关于x轴对称,纵坐标取相反数关于y轴对称,横坐标取相反数

关于原点对称,横、纵坐标同时取相反数

例:P点的坐标为(5,7),则P点

(1.)关于x轴对称的点为(2.)关于y轴的对称点为(3.)关于原点的对称点为3.位置规律★

假设在平面直角坐标系上有一点P(a,b)y1.如果P点在第一象限,有a>0,b>0(横、纵坐标都大于0)第二象限第一象限2.如果P点在第二象限,有a0(横坐标小于0,纵坐标大于0)X3.如果P点在第三象限,有a5.小长方形的面积表示频数。纵轴为频数。等距分组时,通常直接用小长方形的高表示频数,即纵

组距轴为“频数”

6.频数分布折线图√根据频数分布图画出频数分布折线图:①取每个小长方形的上边的中点,以及x

轴上与最左、最右直方相距半个组距的点。②连线【重点题目】P1693、4题

二元一次方程组和不等式、不等式组

1.解二元一次方程组,基本的思想是;2.二元一次方程(组):含两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程。把具有相同未知数的两个二元一次方程组合起来,就组成了二元一次方程组。(具体题目见本单元测试卷填空部分)

3.★解二元一次方程组。常用的方法有和。P96、P100归纳4.★列二元一次方程组解实际问题。关键:找等量关系常见的类型有:分配问题P1185题;P1084、5题;P102练习3;P1048题;P1034题;追及问题P1037题、P1186题;顺流逆流P102练习2;P1082题;药物配制P1087题;行程问题P99练习4;P1083,6题顺流逆流公式:v顺v静v水v逆vv静水5.不等式的性质(重点是性质三)P1285、7题6.利用不等式的性质解不等式,并把解集在数轴上表示出来(课本上的练例、习题)P1342

步骤:去分母,去括号,移项,合并同类项,系数化为一;其中去分母与系数化为一要特别小心,因为要在不等式两端同时乘或除以某一个数,要考虑不等号的方向是否发生改变的问题。7.用不等式表示,P1282题,P127练习2;P123练习28.利用数轴或口诀解不等式组(课本上的例、习题)

数轴:P140归纳口诀(简单不等式):同大取大,同小取小,大(于)小小(于)大取中间,大(于)大小(于)小,解不见了。

9.列不等式(组)解决实际问题:P12910;P1289题;P133例2;P1355、6、7、8、9,P139例2;P140练习2,P1413、4题不等式组的解集的确定方法(a>b):自己将表格补充完整:不等式组

4

在数轴上表示的解集解集x>a口诀大大取大;x>ax>bx<ax<bx<ax>b小大大小中间找;ba小小取小;x>ax<b空集大大小小不见了。

初一数学下册知识点归纳 篇7

二元一次方程组

1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.

2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.

3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有唯一解(即公共解).4.二元一次方程组的解法:(1)代入消元法;(2)加减消元法;(3)注意:判断如何解简单是关键.※5.一次方程组的应用:

(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则“难列

易解”;

(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;

(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.

一元一次不等式(组)

1.不等式:用不等号“>”“<”“≤”“≥”“≠”,把两个代数式连接起来的式子叫不等式.2.不等式的基本性质:

不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.

3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不

博源教育曾老师1378780036612

等式的解集.

4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b>0或ax+b<0,(a≠0).

5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质

3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点.

6.一元一次不等式组:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组;

注意:ab>0

abab0a0b0或a0b0;

amamab<0

0a0b0或a0b0;ab=0a=0或b=0;a=m.

7.一元一次不等式组的解集与解法:所有这些一元一次不等式解集的公共部分,叫做这个一元一次不等式组的解集;解一元一次不等式时,应分别求出这个不等式组中各个不等式的解集,再利用数轴确定这个不等式组的解集.

8.一元一次不等式组的解集的四种类型:设a>b

xaxb不等式组的解集xaxb是xa不等式的组解集是xbba>ba>xaxb不等式组的解集是axbxaxb不等式组解集是空集ba>xy0x、y是正数xy0ba>,

9.几个重要的判断:,

xy0x、y是负数xy0xy0x、y异号且正数绝对值大,xy0-2-

xy0x、y异号且负数绝对值大xy0.博源教育曾老师1378780036613

整式的乘除

1.同底数幂的乘法:aman=am+n,底数不变,指数相加.

2.幂的乘方与积的乘方:(am)n=amn,底数不变,指数相乘;(ab)n=anbn,积的乘方等于各因式乘方的积.3.单项式的乘法:系数相乘,相同字母相乘,只在一个因式中含有的字母,连同指数写在积里.4.单项式与多项式的乘法:m(a+b+c)=ma+mb+mc,用单项式去乘多项式的每一项,再把所得的积相加.5.多项式的乘法:(a+b)(c+d)=ac+ad+bc+bd,先用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加.6.乘法公式:

(1)平方差公式:(a+b)(a-b)=a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;(2)完全平方公式:

①(a+b)=a+2ab+b,两个数和的平方,等于它们的平方和,加上它们的积的2倍;②(a-b)2=a2-2ab+b2,两个数差的平方,等于它们的平方和,减去它们的积的2倍;③(a+b-c)2=a2+b2+c2+2ab-2ac-2bc,略.7.配方:

p(1)若二次三项式x+px+q是完全平方式,则有关系式:22

222

2q;

(2)二次三项式ax2+bx+c经过配方,总可以变为a(x-h)2+k的形式,利用a(x-h)2+k①可以判断ax+bx+c值的符号;②当x=h时,可求出ax+bx+c的最大(或最小)值k.(3)注意:x22

2

1x21xx22.

8.同底数幂的除法:am÷an=am-n,底数不变,指数相减.9.零指数与负指数公式:

(1)a0=1(a≠0);a-n=1an,(a≠0).注意:00,0-2无意义;

(2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01×10-5.

10.单项式除以单项式:系数相除,相同字母相除,只在被除式中含有的字母,连同它的指数作为商的一个因式.

11.多项式除以单项式:先用多项式的每一项除以单项式,再把所得的商相加.

12.多项式除以多项式:先因式分解后约分或竖式相除;注意:被除式-余式=除式商式.13.整式混合运算:先乘方,后乘除,最后加减,有括号先算括号内.线段、角、相交线与平行线

几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)

1.角平分线的定义:一条射线把一个角分成两个相等的部分,这条射线叫角的平分线.(如图)OA几何表达式举例:(1)∵OC平分∠AOBC∴∠AOC=∠BOCB(2)∵∠AOC=∠BOC∴OC是∠AOB的平分线2.线段中点的定义:几何表达式举例:(1)∵C是AB中点∴AC=BCCB点C把线段AB分成两条相等的线段,点C叫线段中点.(如图)A(2)∵AC=BC∴C是AB中点3.等量公理:(如图)(1)等量加等量和相等;(2)等量减等量差相等;(3)等量的等倍量相等;(4)等量的等分量相等.几何表达式举例:(1)∵AC=DB∴AC+CD=DB+CD即AD=BC

博源教育曾老师137878003661AB5(2)∵∠AOC=∠DOB∴∠AOC-∠BOC=∠DOB-∠BOCCACDB(1)OED(2)即∠AOB=∠DOC(3)∵∠BOC=∠GFMACM又∵∠AOB=2∠BOCGOBF(3)∠EFG=2∠GFM∴∠AOB=∠EFGACBEGF(4)(4)∵AC=12AB,EG=12EF又∵AB=EF∴AC=EG4.等量代换:几何表达式举例:∵a=cb=c∴a=b5.补角重要性质:同角或等角的补角相等.(如图)13几何表达式举例:∵a=cb=d又∵c=d∴a=b几何表达式举例:∵a=c+db=c+d∴a=b几何表达式举例:∵∠1+∠3=180°∠2+∠4=180°24又∵∠3=∠4∴∠1=∠26.余角重要性质:同角或等角的余角相等.(如图)几何表达式举例:∵∠1+∠3=90°132∠2+∠4=90°又∵∠3=∠44博源教育曾老师1378780036616∴∠1=∠27.对顶角性质定理:对顶角相等.(如图)CAOBD几何表达式举例:∵∠AOC=∠DOB∴8.两条直线垂直的定义:两条直线相交成四个角,有一个角是直角,这两条直线互相垂直.(如图)AC几何表达式举例:(1)∵AB、CD互相垂直∴∠COB=90°BO(2)∵∠COB=90°∴AB、CD互相垂直D9.三直线平行定理:两条直线都和第三条直线平行,那么,这两条直线也平行.(如图)ACEBDF几何表达式举例:∵AB∥EF又∵CD∥EF∴AB∥CD10.平行线判定定理:两条直线被第三条直线所截:(1)若同位角相等,两条直线平行;(如图)(2)若内错角相等,两条直线平行;(如图)

几何表达式举例:(1)∵∠GEB=∠EFD∴AB∥CD(2)∵∠AEF=∠DFE博源教育曾老师1378780036617(3)若同旁内角互补,两条直线平行.(如图)11.平行线性质定理:ACHFEGBD∴AB∥CD(3)∵∠BEF+∠DFE=180°∴AB∥CD几何表达式举例:(1)∵AB∥CD(1)两条平行线被第三条直线所截,同位角相等;(如图)(2)两条平行线被第三条直线所截,内错角相等;(如图)(3)两条平行线被第三条直线所截,同旁内角互补.(如图)ACHFEGBD∴∠GEB=∠EFD(2)∵AB∥CD∴∠AEF=∠DFE(3)∵AB∥CD∴∠BEF+∠DFE=180°

几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)

一基本概念:

直线、射线、线段、角、直角、平角、周角、锐角、钝角、互为补角、互为余角、邻补角、两点间的距离、相交线、平行线、垂线段、垂足、对顶角、延长线与反向延长线、同位角、内错角、同旁内角、点到直线的距离、平行线间的距离、命题、真命题、假命题、定义、公理、定理、推论、证明.二定理:

1.直线公理:过两点有且只有一条直线.2.线段公理:两点之间线段最短.

3.有关垂线的定理:

(1)过一点有且只有一条直线与已知直线垂直;

(2)直线外一点与直线上各点连结的所有线段中,垂线段最短.4.平行公理:经过直线外一点,有且只有一条直线与这条直线平行

三公式:直角=90°,平角=180°,周角=360°,1°=60′,1′=60″.四常识:

1.定义有双向性,定理没有.

2.直线不能延长;射线不能正向延长,但能反向延长;线段能双向延长.

3.命题可以写为“如果那么”的形式,“如果”是命题的条件,“那么”是命题的结论.

4.几何画图要画一般图形,以免给题目附加没有的条件,造成误解.5.数射线、线段、角的个数时,应该按顺序数,或分类数.

6.几何论证题可以运用“分析综合法”、“方程分析法”、“代入分析法”、“图形观察法”四种方法分析.7.方向角:

初一数学下册知识点归纳 篇8

本章重点:一元一次不等式的解法,

本章难点:了解不等式的解集和不等式组的解集的确定,正确运用不等式基本性质3。

本章关键:彻底弄清不等式和等式的基本性质的区别.

(1)不等式概念:用不等号(“≠”、“”)表示的不等关系的式子叫做不等式(2)不等式的基本性质,它是解不等式的理论依据.

(3)分清不等式的解集和解不等式是两个完全不同的概念.(4)不等式的解一般有无限多个数值,把它们表示在数轴上,(5)一元一次不等式的概念、解法是本章的重点和核心

(6)一元一次不等式的解集,在数轴上表示一元一次不等式的解集

(7)由两个一元一次不等式组成的一元一次不等式组.一元一次不等式组可以由几个(同未知数的)一元一次不等式组成(8).利用数轴确定一元一次不等式组的解集第六章:

1.二元一次方程,二元一次方程组以及它的解,明确二元一次方程组的解是一对未知数的值,会检验一对数值是不是某一个二元一次方程组的解.

2.一次方程组的两种基本解法,能灵活运用代入法,加减法解二元一次方程组及简单的三元一次方程组.

3.根据给出的应用问题,列出相应的二元一次方程组或三元一次方程组,从而求出问题的解,并能根据问题的实际意义,检查结果是否合理.本章的重点是:二元一次方程组的解法代入法,加减法以及列一次方程组解简单的应用问题.

本章的难点是:

1.会用适当的消元方法解二元一次方程组及简单的三元一次方程组;2.正确地找出应用题中的相等关系,列出一次方程组.第七章

本章重点是:整式的乘除运算,特别是对幂的运算及乘法公式的应用要达到熟练程度.本章难点是:对乘法公式结构特征和公式中字母意义的理解及乘法公式的灵活应用1.幂的运算性质,正确地表述这些性质,并能运用它们熟练地进行有关计算.

2.单项式乘以(或除以)单项式,多项式乘以(或除以)单项式,以及多项式乘以多项式的法则,熟练地运用它们进行计算.

3.乘法公式的推导过程,能灵活运用乘法公式进行计算.4.熟练地运用运算律、运算法则进行运算,

5.体会用字母表示数和用字母表示式子的意义.通过式的变形,深入理解转化的思想方法.第八章:

1、认识事物的几种方法:观察与实验归纳与类比猜想与证明生活中的说理数学中的说理

2、定义、命题、公理、定理3、简单几何图形中的推理4、余角、补交、对顶角5、平行线的判定判定:一个公理两个定理。

公理:两直线被第三条直线所截,如果同位角相等(数量关系)两直线平行(位置关系)定理:内错角相等(数量关系)两直线平行(位置关系)定理:同旁内角互补(数量关系)两直线平行(位置关系).平行线的性质:

两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补

由图形的“位置关系”确定“数量关系”第九章:

重点:因式分解的方法,

难点:分析多项式的特点,选择适合的分解方法1.因式分解的概念;

2.因式分解的方法:提取公因式法、公式法、分组分解法(十字相乘法)3.运用因式分解解决一些实际问题.(包括图形习题)第十章:

重点是:用统计知识解决现实生活中的实际问题.难点是:用统计知识解决实际问题.

1.统计初步的基本知识,平均数、中位数、众数等的计算、2.了解数据的收集与整理、绘画三种统计图.

3.应用统计知识解决实际问题能解决与统计相关的综合问题.

本文网址:http://www.xck1.com/x/21303.html